f: \(\dfrac{3x-6}{x^2-4x+4}=\dfrac{3\left(x-2\right)}{\left(x-2\right)^2}=\dfrac{3}{x-2}=\dfrac{3\cdot\left(2x+2\right)}{2\left(x-2\right)\left(x+1\right)}\)
\(\dfrac{5x-5}{2x^2-2}=\dfrac{5\left(x-1\right)}{2\left(x-1\right)\left(x+1\right)}=\dfrac{5}{2x+2}=\dfrac{5\left(x-2\right)}{2\left(x+1\right)\left(x-2\right)}\)
g: \(\dfrac{x+2}{2x^2-8}=\dfrac{x+2}{2\left(x-2\right)\left(x+2\right)}=\dfrac{1}{2\cdot\left(x-2\right)}=\dfrac{x+3}{2\left(x-2\right)\left(x+3\right)}\)
\(\dfrac{4x+12}{x^2+6x+9}=\dfrac{4\left(x+3\right)}{\left(x+3\right)^2}=\dfrac{4}{x+3}=\dfrac{8\left(x-2\right)}{2\left(x-2\right)\left(x+3\right)}\)
h: \(\dfrac{6x+3}{4x^2+4x+1}=\dfrac{3\left(2x+1\right)}{\left(2x+1\right)^2}=\dfrac{3}{2x+1}=\dfrac{3x\left(2x-1\right)}{x\left(2x-1\right)\left(2x+1\right)}\)
\(\dfrac{4x+2}{4x^3-x}=\dfrac{2\left(2x+1\right)}{x\left(2x+1\right)\left(2x-1\right)}=\dfrac{2}{x\left(2x-1\right)}=\dfrac{2\left(2x+1\right)}{x\left(2x-1\right)\left(2x+1\right)}\)