a: \(\overrightarrow{AB}=\left(2;2\right);\overrightarrow{AC}=\left(-1;-1\right)\)
Vì 2/-1=2/-1
nên A,B,C thẳng hàng
b: \(AB=\sqrt{\left(1+1\right)^2+\left(3-1\right)^2}=2\sqrt{2}\)
\(AC=\sqrt{\left(-2+1\right)^2+1^2}=\sqrt{2}\)
\(BC=\sqrt{\left(-2-1\right)^2+3^2}=3\sqrt{2}\)
\(\dfrac{AB}{AC}=\dfrac{2\sqrt{2}}{\sqrt{2}}=2\)
\(\dfrac{BA}{BC}=\dfrac{2\sqrt{2}}{3\sqrt{2}}=\dfrac{2}{3}\)
\(\dfrac{CA}{CB}=\dfrac{\sqrt{2}}{3\sqrt{2}}=\dfrac{1}{3}\)