\(A=\dfrac{\sqrt{x}-1+\sqrt{x}}{\sqrt{x}\left(1-\sqrt{x}\right)}:\left(\dfrac{2\sqrt{x}-1}{-\left(\sqrt{x}-1\right)}+\dfrac{\sqrt{x}\left(2x+\sqrt{x}-1\right)}{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}\right)\)
\(=\dfrac{2\sqrt{x}-1}{\sqrt{x}\left(1-\sqrt{x}\right)}:\left(\dfrac{-2\sqrt{x}+1}{\sqrt{x}-1}+\dfrac{\sqrt{x}\left(2\sqrt{x}-1\right)}{\left(x-\sqrt{x}+1\right)}\right)\)
\(=\dfrac{2\sqrt{x}-1}{\sqrt{x}\left(1-\sqrt{x}\right)}:\dfrac{-2x\sqrt{x}+3x-3\sqrt{x}+1+\left(x-\sqrt{x}\right)\left(2\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(x-\sqrt{x}+1\right)}\)
\(=\dfrac{2\sqrt{x}-1}{\sqrt{x}\left(1-\sqrt{x}\right)}\cdot\dfrac{\left(\sqrt{x}-1\right)\left(x-\sqrt{x}+1\right)}{-2x\sqrt{x}+3x-3\sqrt{x}+1+2x\sqrt{x}-x-2x+\sqrt{x}}\)
\(=\dfrac{2\sqrt{x}-1}{\sqrt{x}}\cdot\dfrac{-\left(x-\sqrt{x}+1\right)}{-2\sqrt{x}+1}\)
\(=\dfrac{x-\sqrt{x}+1}{\sqrt{x}}\)