a: Ta có: \(x^2+4x=0\)
\(\Leftrightarrow x\left(x+4\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-4\end{matrix}\right.\)
c: ta có: \(x^2-x=0\)
\(\Leftrightarrow x\left(x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=1\end{matrix}\right.\)
a) \(\Rightarrow x\left(x+4\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x=-4\end{matrix}\right.\)
b) \(\Rightarrow x\left(3x-5\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{5}{3}\end{matrix}\right.\)
c) \(\Rightarrow x\left(x-1\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x=1\end{matrix}\right.\)
d) \(\Rightarrow\left(x-1\right)\left(3x-2\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=1\\x=\dfrac{2}{3}\end{matrix}\right.\)
e) \(\Rightarrow\left(2x+5\right)\left(3x+3\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=-\dfrac{5}{2}\\x=-1\end{matrix}\right.\)
f) \(\Rightarrow\left(5-x\right)\left(2x+1\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=-\dfrac{1}{2}\\x=5\end{matrix}\right.\)
g) \(\Rightarrow\left(x-3\right)\left(x-5\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=3\\x=5\end{matrix}\right.\)