\(2cos^2\left(2x+\dfrac{\pi}{3}\right)-5cos\left(2x+\dfrac{\pi}{3}\right)+2=0\)
\(\Leftrightarrow\left[{}\begin{matrix}cos\left(2x+\dfrac{\pi}{3}\right)=2>1\left(loại\right)\\cos\left(2x+\dfrac{\pi}{3}\right)=\dfrac{1}{2}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}2x+\dfrac{\pi}{3}=\dfrac{\pi}{3}+k2\pi\\2x+\dfrac{\pi}{3}=-\dfrac{\pi}{3}+k2\pi\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=k\pi\\x=-\dfrac{\pi}{3}+k\pi\end{matrix}\right.\)
Có 4 điểm biểu diễn (mỗi pt ứng với 2 điểm)