A=x2-2x+y2-4x+7
=x2-6x+9+y2-2
=(x-3)2+y2-2
Ta thấy: \(\begin{cases}\left(x-3\right)^2\\y^2\end{cases}\ge0\)
\(\Rightarrow\left(x-3\right)^2+y^2\ge0\)
\(\Rightarrow\left(x-3\right)^2+y^2-2\ge-2\)
\(\Rightarrow A\ge-2\)
Dấu = khi \(\begin{cases}\left(x-3\right)^2=0\\y^2=0\end{cases}\)\(\Leftrightarrow\begin{cases}x=3\\y=0\end{cases}\)
Vậy MinA=-2 \(\Leftrightarrow\begin{cases}x=3\\y=0\end{cases}\)