Hãy phát biểu các khẳng định sau đây dưới dạng điều kiện cần và đủ
Tam giác ABC vuông tại A thì \(BC^2=AB^2+AC^2\)
Tam giác ABC có các cạnh thỏa mãn hệ thức \(BC^2=AB^2+AC^2\) thì vuông tại A
Điều kiện cần và đủ của tam giác ABC vuông tại A là các cạnh của nó thỏa mãn hệ thức :
a2 + b2 = c2
(a, b, c độ dài các cạnh theo thứ tự đối diện các đỉnh A, B, C)
Quy tắc xét dấu một nhị thức dựa trên định lí :
“Nhị thức f(x) = ax + b (a≠0) có dấu cùng với hệ số a khi x lấy giá trị trong khoảng (−ba,+∞)(−ba,+∞) và trái dấu với hệ số a khi x lấy các giá trị thuộc khoảng (−∞,−ba)(−∞,−ba)”.
Áp dụng: Ta lập bảng xét dấu của vế trái f(x) của bất phương trình:
Tập nghiệm của bất phương trình: S=(27,23]∪[5,+∞)
Cách nhận biết đa thức
\(f\left(x\right)=ax^2+bx+c\)
Có nghiệm hay vô nghiệm
Lập \(\Delta\) ( đọc là delta )
\(\Delta=b^2-4ac\)
Nếu \(\Delta< 0\) : đa thức vô nghiệm
Nếu \(\Delta\ge0\) : đa thức có nghiệm
Nếu \(\Delta>0\) : đa thức có hai nghiệm
\(x_1=\dfrac{-b+\sqrt{\Delta}}{2a}\)
\(x_2=\dfrac{-b-\sqrt{\Delta}}{2a}\)
- Các tính chất của bất đẳng thức:
TC1. ( Tính chất bắc cầu)
TC2. (Quy tắc cộng)
A < B <=> A + C < B + C
TC3. (Quy tắc cộng hai bất đẳng thức dùng chiều)
TC4. (Quy tắc nhân)
TC5. (Quy tắc nhân hai bất đẳng thức)
TC6. (Quy tắc lũy thừa, khai căn)
Với A, B > 0, n ∈ N* ta có:
A < B <=> An < Bn
A < B <=> .
- Áp dụng tính chất: 0 < an < bn với n ∈ N*
Xét: 23000 = (23)1000
32000 = (32)1000
Ta có: 0<23<32 ⇒ (23)1000 < (32)1000
Do đó: 23000 < 32000
1.Công thức cộng:
sin(x+y)=sinx.cosy+cosx.siny
sin(x-y)=sinx.cosy-cosx.siny
cos(x+y)=cosxcosy-sinxsiny
cos(x-y)=cosxcosy+sinxsiny
tan(x+y)=\(\dfrac{tanx+tany}{1-tanx.tany}\)
tan(x-y)=\(\dfrac{tanx-tany}{1+tanx.tany}\)
2.Công thức nhân đôi:
sin2x=2sinx.cosx
cos2x=cos2x-sin2x=1-2sin2x=2cos2x-1
tan2x=\(\dfrac{2tanx}{1-tan^2x}\)
3. Công thức hạ bậc:
sin2x=\(\dfrac{1-cos2x}{2}\)
cos2x=\(\dfrac{1+cos2x}{2}\)
tan2x=\(\dfrac{1-cos^2x}{1+cos^2x}\)
4. Công thức biến đổi tích thành tổng:
cosx.cosy=\(\dfrac{1}{2}\)[cos(x-y)+cos(x+y)]
sinx.siny=\(\dfrac{1}{2}\)[cos(x-y)-cos(x+y)]
sinx.cosy=\(\dfrac{1}{2}\)[sin(x-y)+sin(x+y)]
5. Công thức biến đổi tổng thành tích:
cosx+cosy=2cos\(\dfrac{x+y}{2}\).cos\(\dfrac{x-y}{2}\)
cosx-cosy=2sin\(\dfrac{x+y}{2}\).sin\(\dfrac{x-y}{2}\)
sinx+siny=2sin\(\dfrac{x+y}{2}\).cos\(\dfrac{x-y}{2}\)
sinx-siny=2cos \(\dfrac{x+y}{2}\).sin \(\dfrac{x-y}{2}\)
\(\left\{{}\begin{matrix}2X+Y\ge1\left(1\right)\\X-3Y\le1\left(2\right)\end{matrix}\right.\)
*Giải 2X+Y-1=0
cho đi qua 2 điểm và thử điểm O(0;0) vào (1) và loại đi phần k thỏa mãn
*Tương tự giải X-3Y-1=0
*Lấy giao (1) và (2)
a) Tập xác định của f(x) :
A = {x ∈ R | x2 + 3x + 4 ≥ 0 và -x2 + 8x – 15 ≥ 0}
- x2 + 3x + 4 có biệt thức Δ = 32 – 16 < 0
Theo định lí dấu của tam thức:
x2 + 3x + 4 ≥ 0 ∀x ∈R
-x2 + 8x – 15 = 0 ⇔ x1 = 3, x2 = 5
-x2 + 8x – 15 > 0 ⇔ 3 ≤ x ≤ 5 ⇒ A = [3, 5]
b) A/B = [3, 4]
R\(A\B) = (-∞, 3) ∪ (4, +∞)