Ôn tập cuối năm giải tích lớp 12

Sách Giáo Khoa
Hướng dẫn giải Thảo luận (1)

Cho hàm số y=f(x)y=f(x)xác định trên D

- Hàm số y=f(x)y=f(x)được gọi là đồng biến trên D nếu ∀x1,x2∈D,x1<x2 ⇒f(x1)<f(x2)∀x1,x2∈D,x1<x2 ⇒f(x1)<f(x2)

- Hàm số y=f(x)y=f(x)được gọi là nghịch biến trên D nếu ∀x1,x2∈D,x1<x2 ⇒f(x1)>f(x2)

Sách Giáo Khoa
Hướng dẫn giải Thảo luận (1)

Giả sử hàm số y=f(x)y=f(x)có đạo hàm trên khoảng D

a.Nếu hàm số y=f(x)y=f(x) đồng biến trên D thì f'(x)≥0,∀x∈D

b.Nếu hàm số y=f(x)y=f(x) nghịch biến trên D thì f'(x)≤0,∀x∈D

*** Lưu ý : nếu trên miền D, có tồn tại vài giá trị xo sao cho f'(xo)=0. Không ảnh hưởng đến tính đơn điệu của hàm y=f(x) trên miền đó.

Sách Giáo Khoa
Hướng dẫn giải Thảo luận (1)

 

undefined

Sách Giáo Khoa
Hướng dẫn giải Thảo luận (1)

a) Tìm tập xác định của hàm số. Xét tính chẵn, lẻ, tuần hoàn của hàm số để thu hẹp phạm vi khảo sát.

b) Sự biến thiên :

+ Xét sự biến thiên của hàm số :

- Tìm đạo hàm bậc nhất y' ;

- Tìm các điểm tại đó y' bằng 0 hoặc không xác định ;

- Xét dấu y' và suy ra chiều biến thiên của hàm số .

+ Tìm cực trị .

+ Tìm các giới hạn tại vô cực, các giới hạn vô cực và tìm các tiệm cận (nếu có).

+ Lập bảng biến thiên tổng kết các bước trên để hình dung ra dáng điệu của đồ thị .

c) vẽ đồ thị (thể hiện các cực trị, tiệm cận, giao của đồ thị với các trục, . . .).



Sách Giáo Khoa
Hướng dẫn giải Thảo luận (1)

 

Sách Giáo Khoa
Hướng dẫn giải Thảo luận (1)

 

Sách Giáo Khoa
Hướng dẫn giải Thảo luận (1)

1. Tính chất của hàm số mũ y= ax ( a > 0, a# 1).

- Tập xác định: .

- Đạo hàm: ∀x ∈ ,y= axlna.

- Chiều biến thiên Nếu a> 1 thì hàm số luôn đồng biến

Nếu 0< a < 1 thì hàm số luôn nghịch biến

- Tiệm cận: trục Ox là tiệm cận ngang.

- Đồ thị nằm hoàn toàn về phía trên trục hoành ( y= ax > 0, ∀x), và luôn cắt trục tung taih điểm ( 0;1) và đi qua điểm (1;a).

2. Tính chất của hàm số lôgarit y = logax (a> 0, a# 1).

- Tập xác định: (0; +∞).

- Đạo hàm ∀x ∈ (0; +∞),y = .

- Chiều biến thiên: Nếu a> 1 thì hàm số luôn đồng biến

Nếu 0< a < 1 thì hàm số luôn nghịch biến

- Tiệm cận: Trục Oy là tiệm cận đứng.

- Đồ thị nằm hoàn toàn phía bên phải trục tung, luôn cắt trục hoành tại điểm (1;0) và đi qua điểm (a;1).

3. Chú ý

- Vì e > 1 nên nếu a > 1 thì lna > 0, suy ra (ax) > 0,∀x và (logax) > 0, ∀x > 0;

do đó hàm số mũ và hàm số lôgarit với cơ số lớn hơn 1 đều là những hàm số luôn luôn đồng biến.

Tương tự, nếu 0 < a< 1thì lna < 0, (ax) < 0 và (logax) < 0, ∀x > 0; hàm số mũ và hàm số lôgarit với cơ số nhỏ hơn 1 đều là những hàm số luôn luôn nghịch biến.

- Công thức đạo hàm của hàm số lôgarit có thể mở rộng thành

(ln|x|) = , ∀x # 0 và (loga|x|) = , ∀x # 0.

Sách Giáo Khoa
Hướng dẫn giải Thảo luận (1)
Phương pháp đổi biến số

Ta biết rằng nếu ∫f(x)dx=F(x)+C thì ∫f(t)dt=F(t)+C.

Từ đó ta có phương pháp để tìm nguyên hàm của những hàm số dạng g(x)=f(u(x))u′(x) bằng cách đặt t=u(x).

Nội dung phương pháp đổi biến số tính: ∫g(x)dx=∫f(u(x))u′(x)dx

Đặt t=u(x)⇒dt=u′(x)dx (lấy đạo hàm hai vế)

⇒∫g(x)dx=∫f(t)dt=F(t)+C

Ví dụ 1: Tìm nguyên hàm của hàm số f(x)=sin3xcosx

Phân tích: Ta thấy f(x)=sin3xcosx=(sinx)3(sinx)′ nên ta có thể đặt t=sinx.

Giải

t=sinx⇒dt=cosxdx

⇒∫sin3xcosxdx=∫t3dt=t44+C=sin4x4+C (C∈R)

Ví dụ 2: Tính ∫xx2+1−−−−−√dx

Phân tích: xx2+1−−−−−√=(x2+1)12122x=12(x2+1)12(x2+1)′

Giải

Đặt t=x2+1⇒dt=2xdx

∫xx2+1−−−−−√dx=∫(x2+1)12122xdx=12∫t12dt=t323+C

=(x2+1)323+C=(x2+1)x2+1√3+C (C∈R)

Lưu ý: Ta có thể giải ví dụ 2 như sau:

t=x2+1−−−−−√⇒t2=x2+1⇒2tdt=2xdx⇒tdt=xdx

⇒∫xx2+1−−−−−√dx=∫x2+1−−−−−√.xdx=∫t.tdt=∫t2dt

=t33+C=(x2+1√)33+C=(x2+1)x2+1√3+C

Nguyên hàm của một số hàm số hợp đơn giản

1) ∫kdx=kx+C

2) ∫(ax+b)αdx=1a(ax+b)α+1α+1+C(α≠1)

3) ∫dxax+b=1aln|ax+b|+C(x≠0)

4) ∫eax+bdx=1aeax+b+C

5) ∫cos(ax+b)dx=1asin(ax+b)+C

6) ∫sin(ax+b)dx=−1acos(ax+b)+C

7) ∫1cos2(ax+b)dx=1atan(ax+b)+C

8) ∫1sin2(ax+b)dx=−1acot(ax+b)+C . Định nghĩa

VÍ DỤ 1. Cho {F(x)=x3f(x)=3x2

VÍ DỤ 2. Cho {F(x)=cosxf(x)=−sinx

Ta thấy ở hai ví dụ trên đều có F’(x) = f(x). Ta gọi F(x) là một nguyên hàm của f(x). Vì với là một hằng số bất kỳ, ta có (F(x) + C)’ = F’(x) = f(x) nên nếu F(x) là nguyên hàm của f(x) thì F(x) + C cũng là một nguyên hàm của f(x). Ta gọi F(x) + C, ( C là hằng số) là Họ nguyên hàm của f(x).

Ký hiệu: ∫f(x)dx=F(x)+C

VÍ DỤ:
∫x4dx=15x5+C;∫cosxdx=sinx+C

Sách Giáo Khoa
Hướng dẫn giải Thảo luận (2)
Loại 1: Đặt t=u(x) Loại 2: Đặt x=u(t) Phương pháp đổi biến loại 1

Bài toán: Tính tích phân dạng: I=∫abf(u(x))(u(x))′dx

Phương pháp:

Đặt t=u(x)⇒dt=u′(x)dx

Đổi cận:

doi can

⇒I=∫u(a)u(b)f(t)dt

Ví dụ 1: Tính các tích phân sau:

a) I=∫01ex2+1xdx

Phân tích: Ta thấy có thể viết lại: I=∫01ex2+1xdx=∫01ex2+112.2xdx=12∫01ex2+1.2xdx

Trong đó 2x là đạo hàm của x2+1 nên ta có thể đặt t=x2+1.

Giải

Đặt t=x2+1⇒dt=2xdx

Đổi cận:

doi can vd1

⇒I=12∫12etdt=12et∣∣∣21=12(e2−e)

b) J=∫01x3x2+1−−−−−√dx

Đặt t=x2+1−−−−−√⇒t2=x2+1⇒x2=t2−1⇒xdx=tdt

Đổi cận:

doi can vd2

⇒J=∫01x2.x2+1−−−−−√.xdx=∫12√(t2−1).t.tdt=∫12√(t4−t2)dt

=(t55−t33)∣∣∣2–√1=22√+215

Một số bài tập áp dụng

1) J1 = ∫12xex2dx 2) J2 = ∫1e1+lnx√xdx

3) J3 = ∫01x3(x4−1)5dx 4) J4 = ∫024−x2−−−−−√.xdx

5) J5 = ∫0π/2cosx(1+sinx)4dx

Phương pháp đổi biến loại 2

Trong một số trường hợp đặt biệt, ta sẽ đổi biến bằng cách đặt x=u(t) để chuyển từ biến x về biến t. Một số trường hợp mà ta thường gặp có thể áp dụng phương pháp này:

1) Hàm số có chứa a2−x2−−−−−−√: đặt x=|a|sint với (−π2≤t≤π2) hoặc x=|a|cost với (0≤t≤π).

2) Hàm số có chứa x2−a2−−−−−−√: đặt x=|a|sint với (−π2≤t≤π2;t≠0) hoặc x=|a|cost với (0≤t≤π;t≠π2).

3) Hàm số có chứa a2+x2: đặt x=|a|tant với (−π2≤t≤π2) hoặc x=|a|cott với (0≤t≤π).

Ví dụ 3: Tình các tích phân sau:

a) I=∫024−x2−−−−−√dx

Giải

Đặt x=2sint (−π2≤t≤π2)

⇒dx=2costdt

Đổi cận:

doi can vd3

⇒I=∫0π24−4sin2t−−−−−−−−√.2costdt=∫0π24(1−sin2t)−−−−−−−−−−√.2costdt

=∫0π24cos2t−−−−−√.2costdt=∫0π24cos2tdt=∫0π22(1+cos2t)dt

=2(t+12sin2t)∣∣∣π20=π

b) J=∫01x1+x2dx

Giải

Đặt x=tant⇒dx=1cos2tdt (−π2≤t≤π2)

Đổi cận:

doi can vd4

⇒J=∫0π4tant1+tan2t(1+tan2t)dt=∫0π4tantdt=∫0π4sintcostdt

=−∫0π4(cost)′costdt=−ln(cost)∣∣∣π40=−ln2√2

Một số bài tập áp dụng:

1) ∫01dx1+x2 2) ∫02√2−x2−−−−−√dx 3) ∫2√2dxxx2−1√

4) ∫123√2dx1−x2√ 5) ∫13√9+3x2√dxx2

Sách Giáo Khoa
Hướng dẫn giải Thảo luận (1)
Các khái niệm về Số phức: Số phức \(z = a + bi\) có phần thực là \(a\), phần ảo là \(b\)\((a,b\in\mathbb{R}\)\(i^2=-1)\) Số phức bằng nhau \(a + bi = c + di \Leftrightarrow\ a=c\)\(b=d\) Số phức \(z = a + bi\) được biểu diễn bới điểm \(M(a,b)\) trên mặt phẳng toạ độ.

Hỏi đáp Toán

Độ dài của vectơ là môđun của số phức \(z\), kí hiệu là \(\left| z \right| = \overrightarrow {OM} = \sqrt {{a^2} + {b^2}} \)

Hỏi đáp Toán

Số phức liên hợp của số phức \(z = a + bi\)\(a-bi\) kí hiệu là \(\overline z = a - bi.\)

Hỏi đáp Toán