Ôn tập chương Hình trụ, Hình nón, Hình cầu

Thien Tu Borum
Thien Tu Borum 17 tháng 4 2017 lúc 16:41

Hướng dẫn trả lời:

Ta có: Thể tích phần cần tính là tổng thể tích của hai hình trụ có đường kính là 11cm và chiều cao là 2cm.

V1=πR2h1=π(112)2.2=60,5π(cm3)V1=πR2h1=π(112)2.2=60,5π(cm3)

Thể tích hình trụ có đường kính đáy là 6cm, chiều cao là 7cm

V2=πR2h2=π(62)2.7=63π(cm3)V2=πR2h2=π(62)2.7=63π(cm3)

Vậy thể tích của chi tiết máy cần tính là:

V = V1 + V2 = 60,5π + 63 π = 123,5 π (cm3)

Tương tự, theo đề bài diện tích bề mặt của chi tiết máy bằng tổng diện tích xung quanh cua hai chi tiết máy.

Diện tích xung quanh của hình trụ có đường kính đáy 11 cm và chiều cao là 2cm là:

Sxq(1)=2πRh1=2π112.2=22π(cm2)Sxq(1)=2πRh1=2π112.2=22π(cm2)

Diện tích xung quanh của hình trụ có đường kính đáy là 6cm và chiều cao là 7cm là:

Sxq(2)=2πRh2=2π62.7=42π(cm2)Sxq(2)=2πRh2=2π62.7=42π(cm2)

Vậy diện tích bề mặt của chi tiết máy là:

S = Sxq(1) + Sxq(2) = 22π + 42π = 64π (cm2)

Bình luận (0)
Thien Tu Borum
Thien Tu Borum 17 tháng 4 2017 lúc 16:45

Hướng dẫn trả lời:

Theo đề bài ta có:

Diện tích hình chữ nhật ABCD là: AB.AD = 2a2 (1)

Chu vi hình chữ nhật là: 2(AB + CD) = 6a ⇒ AB + CD = 3a (2)

Từ (1) và (2), ta có AB và CD là nghiệm của phương trình:

x2 – 3ax – 2a2 = 0

Giải phương trình ta được x1 = 2a; x2 = a

Theo giả thiết AB > AD nên ta chọn AB = 2a; AD = a

Vậy diện tích xung quanh hình trụ là:

Sxq = 2π . AD . AB = 2π . a . 2a = 4 πa2

Thể tích hình trụ là:

V = π . AD2 . AB = π. a2 . 2a = 2πa3

Bình luận (0)
Thien Tu Borum
Thien Tu Borum 17 tháng 4 2017 lúc 16:47

Hướng dẫn trả lời:

- Với hình a:

Stp = Sxq + Sđáy = πrl + πr2 = π . 2,5 . 5,6 + π . 2,52 = 63,69 (m2)

- Với hình b:

Stp = Sxq + Sđáy = π . 3,6 . 4,8 + π . 3,62 = 94,95 (m2)

Bình luận (0)
Thien Tu Borum
Thien Tu Borum 17 tháng 4 2017 lúc 16:50

Hướng dẫn trả lời:

a) Xét hai tam giác vuông AOC và BDO ta có: ˆA=ˆB=900A^=B^=900

ˆAOC=ˆBDOAOC^=BDO^ (hai góc có cạnh tương ứng vuông góc).

Vậy ∆AOC ~ ∆BDO

⇒ACAO=BOBDhayACa=bBD⇒ACAO=BOBDhayACa=bBD (1)

Vậy AC . BD = a . b = không đổi.

b) Khi thì tam giác AOC trở thành nửa tam giác đều cạnh là OC, chiều cao AC.

⇒OC=2AO=2a⇔AC=OC√32=a√3⇒OC=2AO=2a⇔AC=OC32=a3

Thay AC = a√3 vào (1), ta có:

ACa=bBD=a√3.BD=a.b⇒BD=aba√3=b√33ACa=bBD=a3.BD=a.b⇒BD=aba3=b33

Ta có công thức tính diện tích hình thang ABCD là:

S=AC+BD2.AB=a√3+b√332.(a+b)=√36(3a2+4ab+b2)(cm2)S=AC+BD2.AB=a3+b332.(a+b)=36(3a2+4ab+b2)(cm2)

c) Theo đề bài ta có:

∆AOC tạo nên hình nón có bán kính đáy là AC = a√3 và chiều cao là AO = a.

∆BOD tạo nên hình nón có bán kính đáy là BD=b√33BD=b33 và chiều cao OB = b

Ta có: V1V2=13π.AC2.AO13π.BD2.OB=AC2.AOBD2.OB=(a√3)2.a(b√33)2.b=3a3b33=9a3b3V1V2=13π.AC2.AO13π.BD2.OB=AC2.AOBD2.OB=(a3)2.a(b33)2.b=3a3b33=9a3b3

Vậy V1V2=9a3b3

Bình luận (0)
Thien Tu Borum
Thien Tu Borum 17 tháng 4 2017 lúc 16:50

Hướng dẫn trả lời:

- Hình a:

Thể tích hình trụ có đường kính đáy 14cm, đường cao 5,8cm

V1 = π . r2h = π. 72. 5,8 = 284,2 π (cm3)

Thể tích hình nón có đường kính đáy 14cm và đường cao 8,1 cm.

V2=13πr2h=13π.72.8,1=132,3π(cm3)V2=13πr2h=13π.72.8,1=132,3π(cm3)

Vậy thể tích hình cần tính là:

V = V1 + V2 = 2,84,2π + 132,3π = 416,5π (cm3)

- Hình b)

Thể tích hình nón lớn: V1=13πr2h1=13π(7,6)2.16,4=991,47(cm3)V1=13πr2h1=13π(7,6)2.16,4=991,47(cm3)

Thể tích hình nón nhỏ: V2=13πr2h2=13π(3,8)2.8,2=123,93(cm3)V2=13πr2h2=13π(3,8)2.8,2=123,93(cm3)

Thể tích hình nón cần tính là: V = V1 – V2 = 991,47 – 123,93 = 867,54 cm3

Bình luận (0)
Nguyễn Như Bảo Hân
Nguyễn Như Bảo Hân 16 tháng 7 2017 lúc 20:45

Mình cũng nghĩ giống như bạn trên

Bình luận (0)
Thien Tu Borum
Thien Tu Borum 17 tháng 4 2017 lúc 16:51

Hướng dẫn trả lời:

Hình a.

V=π(12,62)2.8,4+12.43π(12,62)3=13π(6,9)2.(8,4+12,63)=500,094π(cm3)V=π(12,62)2.8,4+12.43π(12,62)3=13π(6,9)2.(8,4+12,63)=500,094π(cm3)

Vậy Vhình a = 500,094π cm3

Hình b.

V=13π(6,9)2.20+12.43π.(6,9)3=13π(6,9)2(20+13,8)=536,406π(cm3)V=13π(6,9)2.20+12.43π.(6,9)3=13π(6,9)2(20+13,8)=536,406π(cm3)

Vậy Vhình b = 536, 406π cm3

Hình c.

V=13π.22.4+π.22.4+12.43π.23=4.22.π(13+1+13)=80π3(cm3)V=13π.22.4+π.22.4+12.43π.23=4.22.π(13+1+13)=80π3(cm3)

Vậy Vhình c =

b

Bình luận (0)
Thien Tu Borum
Thien Tu Borum 17 tháng 4 2017 lúc 16:51

Hướng dẫn trả lời:

Hình a.

V=π(12,62)2.8,4+12.43π(12,62)3=13π(6,9)2.(8,4+12,63)=500,094π(cm3)V=π(12,62)2.8,4+12.43π(12,62)3=13π(6,9)2.(8,4+12,63)=500,094π(cm3)

Vậy Vhình a = 500,094π cm3

Hình b.

V=13π(6,9)2.20+12.43π.(6,9)3=13π(6,9)2(20+13,8)=536,406π(cm3)V=13π(6,9)2.20+12.43π.(6,9)3=13π(6,9)2(20+13,8)=536,406π(cm3)

Vậy Vhình b = 536, 406π cm3

Hình c.

V=13π.22.4+π.22.4+12.43π.23=4.22.π(13+1+13)=80π3(cm3)V=13π.22.4+π.22.4+12.43π.23=4.22.π(13+1+13)=80π3(cm3)

Vậy Vhình c =

Bình luận (0)
Thien Tu Borum
Thien Tu Borum 17 tháng 4 2017 lúc 16:53

Cho hình vuông ABCD nội tiếp đường tròn tâm O, bán kính R và GEF là tam giác đều nội tiếp đường tròn đó, EF là dây song song với AB (h.119). Cho hình đó quay quanh trục GO. Chứng minh rằng:

a) Bình phương thể tích của hình trụ sinh ra bởi hình vuông bằng tích của thể tích hình cầu sinh ra bởi hình tròn và thể tích hình nón do tam giác đều sinh ra.

b) Bình phương diện tích toàn phần của hình trụ bằng tích của diện tích hình cầu và diện tích toàn phần của hình nón.

Hướng dẫn trả lời:

a) Thể tích hình trụ được tạo bởi hình vuông ABCD là:

V=π(AB2)2.BCV=π(AB2)2.BC với AB là đường chéo của hình vuông có cạnh là R và AB = R√2 (=BC)

V=π(R√22)2.R√2=π.2R24.R√2=πR3√22⇒V2=(πR3√222)=2π2R62(1)V=π(R22)2.R2=π.2R24.R2=πR322⇒V2=(πR3222)=2π2R62(1)

Thể tích hình cầu có bán kính R là: V1=43πR3V1=43πR3

Thể tích hình nón có bán kính đường tròn đáy bằng EF2EF2 là:

V2=13π(EF2)2.GHV2=13π(EF2)2.GH

Với EF = R√3 (cạnh tam giác đều nội tiếp trong đường tròn (O;R))

GH=EF√32=R√3.√32=3R2GH=EF32=R3.32=3R2

Thay vào V2, ta có: V2=13π(R√32)2.3R2=38πR3V2=13π(R32)2.3R2=38πR3

Ta có: V1V2=43πR3.38πR3=π2R62(2)V1V2=43πR3.38πR3=π2R62(2)

So sánh (1) và (2) ta được : V2 = V1. V2

b) Diện tích toàn phần của hình trụ có bán kính AB2AB2 là:

S=2π(AB2).BC+2π(AB2)2S=2π.R√22R√2+2π(R√22)2S=2πR2+πR2=3πR2⇒S2=(3πR2)2=9π2.R4(1)S=2π(AB2).BC+2π(AB2)2S=2π.R22R2+2π(R22)2S=2πR2+πR2=3πR2⇒S2=(3πR2)2=9π2.R4(1)

Diện tích mặt cầu có bán kính R là: S1 = 4πR2 (2)

Diện tích toàn phần của hình nón là:

S2=πEF2.FG+π(EF2)2=πR√32.R√3+π(R√32)2=9πR24S2=πEF2.FG+π(EF2)2=πR32.R3+π(R32)2=9πR24

Ta có: S1S2=4πR2.9πR24=9π2R4(2)S1S2=4πR2.9πR24=9π2R4(2)

So sánh (1) và (2) ta có: S2 = S1. S2

Bình luận (0)
Thien Tu Borum
Thien Tu Borum 17 tháng 4 2017 lúc 16:53

Hình 120 mô tả một hình cầu được đặt khít vào trong một hình trụ, các kích thước cho trên hình vẽ.

Hãy tính:

a)Thể tích hình cầu.

b) Thể tích hình trụ.

c) Hiệu giữa thể tích hình trụ và thể tích hình cầu.

d) Thể tích của một hình nón có bán kính đường tròn đáy là r cm và chiều cao 2r cm.

e) Từ các kết quả a), b), c), d) hãy tìm mối liên hệ giữa chúng.

Hướng dẫn trả lời:

a) Thể tích của hình cầu là:

V1=43πr3(cm3)V1=43πr3(cm3)

b) Thể tích hình trụ là:

V2 = πr2. 2r = 2πr3 (cm3)

c) Hiệu giữa thể tích hình trụ và thể tích hình cầu là:

V3=V2−V1=2πr3−43πr2=23πr3(cm3)V3=V2−V1=2πr3−43πr2=23πr3(cm3)

d) Thể tích hình nón là:

V4=π3r2.2r=23πr3(cm3)V4=π3r2.2r=23πr3(cm3)

e) Từ kết quả ở câu s, b,c, d ta có hệ thức: V4 = V2 – V1 hay “ Thể tích hình nón nội tiếp trong hình trụ bằng hiệu giữa thể tích hình trụ và thể tích hình cầu nội tiếp trong hình trụ ấy”

Bình luận (0)
Katy Perry
Katy Perry 19 tháng 4 2017 lúc 5:10

Hướng dẫn trả lời:

a) Thể tích của hình cầu là:

V1=43πr3(cm3)V1=43πr3(cm3)

b) Thể tích hình trụ là:

V2 = πr2. 2r = 2πr3 (cm3)

c) Hiệu giữa thể tích hình trụ và thể tích hình cầu là:

V3=V2−V1=2πr3−43πr2=23πr3(cm3)V3=V2−V1=2πr3−43πr2=23πr3(cm3)

d) Thể tích hình nón là:

V4=π3r2.2r=23πr3(cm3)V4=π3r2.2r=23πr3(cm3)

e) Từ kết quả ở câu s, b,c, d ta có hệ thức: V4 = V2 – V1 hay “ Thể tích hình nón nội tiếp trong hình trụ bằng hiệu giữa thể tích hình trụ và thể tích hình cầu nội tiếp trong hình trụ ấy”

Bình luận (0)
Nguyen Thuy Hoa
Nguyen Thuy Hoa 9 tháng 6 2017 lúc 9:03

Hình trụ. Hình nón. Hình cầu

Bình luận (0)
Nguyen Thuy Hoa
Nguyen Thuy Hoa 9 tháng 6 2017 lúc 8:57

a) Với giả thiết ở đề bài, ta có thể tính được r từ đó tính được diện tích mặt cầu gần bằng \(26cm^2\)

b) Tương tự câu a, ta tính được thể tích hình nón là \(7,9cm^3\)

Bình luận (0)

Khoá học trên OLM của Đại học Sư phạm HN

Loading...

Khoá học trên OLM của Đại học Sư phạm HN