Bài 12: Hình vuông

Thien Tu Borum
21 tháng 4 2017 lúc 16:12

Bài giải:

a) Gọi đường chéo của hình vuông có độ dài là a.

Ta có: a2 = 32 + 32 = 18

Suy ra a = √18

Vậy đường chéo của hình vuông đó bằng 3√2.

b) Gọi cạnh của hình vuông là a.

Ta có a2 + a2 + 22 =>2 a2 = 4 => a2 = 2 => a = √2

Vậy cạnh của hình vuông đó bằng √2

Bình luận (0)
Nguyễn Đinh Huyền Mai
21 tháng 4 2017 lúc 16:17

Ta có: a2 = 32 + 32 = 18

Suy ra a = √1818

Vậy đường chéo của hình vuông đó bằng 3√22.

b) Gọi cạnh của hình vuông là a.

Ta có a2 + a2 + 22 =>2 a2 = 4 => a2 = 2 => a = √22

Vậy cạnh của hình vuông đó bằng √22.

Bình luận (0)
Thien Tu Borum
21 tháng 4 2017 lúc 16:13

Bài giải:

- Hình vuông là hình chữ nhật có bốn cạnh bằng nhau. Mà hình chữ nhật có tâm đối xứng là giao điểm của hai đường chéo, nên hình vuông có tâm đối xứng là giao điểm của hai đường chéo.

- Hai đường thằng đi qua trung điểm hai cạnh đối của hình chữ nhật là hai trục đối xứng của hình. Mà hình vuông là hình chữ nhật có bốn cạnh bằng nhau nên hai đường trung bình của hình vuông là hai trục đối xứng của nó.

Mặt khác, hai đường chéo của hình thoi là hai trục đối xứng của hình mà hình vuông là hình thoi có bốn góc vuông nên hai đường chéo của hình vuông là hai trục đối xứng của nó.

Vậy hình vuông có bốn trục đối xứng đó là hai đường chéo và hai đường trung bình của hình vuông.

Bình luận (0)
Nguyễn Đinh Huyền Mai
21 tháng 4 2017 lúc 16:16

- Hình vuông là hình chữ nhật có bốn cạnh bằng nhau. Mà hình chữ nhật có tâm đối xứng là giao điểm của hai đường chéo, nên hình vuông có tâm đối xứng là giao điểm của hai đường chéo.

- Hai đường thằng đi qua trung điểm hai cạnh đối của hình chữ nhật là hai trục đối xứng của hình. Mà hình vuông là hình chữ nhật có bốn cạnh bằng nhau nên hai đường trung bình của hình vuông là hai trục đối xứng của nó.

Mặt khác, hai đường chéo của hình thoi là hai trục đối xứng của hình mà hình vuông là hình thoi có bốn góc vuông nên hai đường chéo của hình vuông là hai trục đối xứng của nó.

Vậy hình vuông có bốn trục đối xứng đó là hai đường chéo và hai đường trung bình của hình vuông.

Bình luận (0)
Satoshi
7 tháng 11 2018 lúc 10:12

- Hình vuông là hình chữ nhật có bốn cạnh bằng nhau. Mà hình chữ nhật có tâm đối xứng là giao điểm của hai đường chéo, nên hình vuông có tâm đối xứng là giao điểm của hai đường chéo.

- Hai đường thằng đi qua trung điểm hai cạnh đối của hình chữ nhật là hai trục đối xứng của hình. Mà hình vuông là hình chữ nhật có bốn cạnh bằng nhau nên hai đường trung bình của hình vuông là hai trục đối xứng của nó.

Mặt khác, hai đường chéo của hình thoi là hai trục đối xứng của hình mà hình vuông là hình thoi có bốn góc vuông nên hai đường chéo của hình vuông là hai trục đối xứng của nó.

Vậy hình vuông có bốn trục đối xứng đó là hai đường chéo và hai đường trung bình của hình vuông.

Bình luận (1)
Thien Tu Borum
21 tháng 4 2017 lúc 16:15

81. Cho hình 106. Tứ giác AEDF là hình gì ? Vì sao ?

Bài giải:

Tứ giác AEDF là hình vuông.

Giải thích:

Tứ giác AEDF có EA // DF (cùng vuông góc AF)

DE // FA (cùng vuông góc với AE)

nên AEDF là hình bình hành (theo định nghĩa)

Hình bình hành AEDF có đường chéo AD là phân giác của góc A nên là hình thoi.

Hình thoi AEDF có ˆAA^= 900

Nên là hình vuông.

Bình luận (0)
Nguyễn Đinh Huyền Mai
21 tháng 4 2017 lúc 16:15

Tứ giác AEDF là hình vuông.

Giải thích:

Tứ giác AEDF có EA // DF (cùng vuông góc AF)

DE // FA (cùng vuông góc với AE)

nên AEDF là hình bình hành (theo định nghĩa)

Hình bình hành AEDF có đường chéo AD là phân giác của góc A nên là hình thoi.

Hình thoi AEDF có A^= 900

Nên là hình vuông.

Bình luận (0)
Nguyen Thanh
17 tháng 11 lúc 20:54

Tứ giác AEDF là hình vuông, vì:

AEDF là hình chữ nhật ( do góc A= góc E= góc =F= 90 độ)

Lại có AD là phân giác góc A

=> AEDF là hình vuông ( dấu hiệu 3)

 

Bình luận (0)
Thien Tu Borum
21 tháng 4 2017 lúc 16:13

Bài giải:

Các tam giác vuông AEH, BFC, CGF, DHG có:

AE = BF = CG = DH (gt)

Suy ra AH = BE = CF = DG

Nên ∆AEH = ∆BFE = ∆CGF = ∆DHG (c.g.c)

Do đó HE = EF = FG = GH (1)

ˆEHAEHA^ = ˆFEBFEB^

Ta có ˆHEFHEF^ = 1800 - (ˆHEAHEA^ + ˆFEBFEB^) = 1800 - (ˆHEAHEA^ + ˆEHAEHA^)

= 1800 - 900 = 900 (2)

Từ (1) và (2) ta được EFGH là hình vuông


Bình luận (0)
Nguyễn Đinh Huyền Mai
21 tháng 4 2017 lúc 16:14

Các tam giác vuông AEH, BFC, CGF, DHG có:

AE = BF = CG = DH (gt)

Suy ra AH = BE = CF = DG

Nên ∆AEH = ∆BFE = ∆CGF = ∆DHG (c.g.c)

Do đó HE = EF = FG = GH (1)

và ˆEHAEHA^ = ˆFEBFEB^

Ta có ˆHEFHEF^ = 1800 - (ˆHEAHEA^ + ˆFEBFEB^) = 1800 - (ˆHEAHEA^ + ˆEHAEHA^)

= 1800 - 900 = 900 (2)

Từ (1) và (2) ta được EFGH là hình vuông.

Bình luận (0)
Nguyễn Đinh Huyền Mai
21 tháng 4 2017 lúc 16:15

Các tam giác vuông AEH, BFC, CGF, DHG có:

AE = BF = CG = DH (gt)

Suy ra AH = BE = CF = DG

Nên ∆AEH = ∆BFE = ∆CGF = ∆DHG (c.g.c)

Do đó HE = EF = FG = GH (1)

EHA^ = FEB^

Ta có HEF^ = 1800 - (HEA^ + FEB^) = 1800 - (HEA^ + EHA^)

= 1800 - 900 = 900 (2)

Từ (1) và (2) ta được EFGH là hình vuông.

Bình luận (0)
Trần Ích Bách
21 tháng 4 2017 lúc 16:23

Các câu a và d sai.

Các câu b, c, e đúng.


Bình luận (0)
Thien Tu Borum
21 tháng 4 2017 lúc 16:27

Bài giải:

Các câu a và d sai.

Các câu b, c, e đúng


Bình luận (0)
Hương Yangg
21 tháng 4 2017 lúc 17:09

a) Tứ giác AEDF là hình bình hành.

Vì có DE // AF, DF // AE (gt)

(theo định nghĩa)

b) Hình bình hành AEDF là hình thoi khi AD là tia phân giác của góc A với cạnh BC thì AEDF là hình thoi.

c) Nếu ∆ABC vuông tại A thì AEDF là hình chữ nhật (vì là hình bình hành có một góc vuông).

Nếu ABC vuông tại A và D là giao điểm của tia phân giác của góc A với cạnh BC thì AEDF là hình vuông (vì vừa là hình chữ nhật vừa là hình thoi).

Bình luận (2)
Hương Yangg
21 tháng 4 2017 lúc 17:08

a) Tứ giác ADFE có AE // DF, AE = DF nên là hình bình hành.

Hình bình hành ADFE có góc A = 900 nên là hình chữ nhật.

Hình chữ nhật ADFE có AE = AD nên là hình vuông.

b) Tứ giác DEBF có EB // DF, EB = DF nên là hình bình hành.

Do đó DE // BF

Tương tự AF // EC

Suy ra EMFN là hình bình hành.

Theo câu a, ADFE là hình vuông nên ME = MF, ME ⊥ MF.

Hình bình hành EMFN có góc M = 900 nên là hình chữ nhật, lại có ME = MF nên là hình vuông.

Bình luận (0)
Nguyễn Xuân Nhã Thi
9 tháng 8 2017 lúc 14:33

a) Tứ giác ADFE có AE // DF, AE = DF nên là hình bình hành.

Hình bình hành ADFE có ˆAA^ = 900 nên là hình chữ nhật.

Hình chữ nhật ADFE có AE = AD nên là hình vuông.

b) Tứ giác DEBF có EB // DF, EB = DF nên là hình bình hành.

Do đó DE // BF

Tương tự AF // EC

Suy ra EMFN là hình bình hành.

Theo câu a, ADFE là hình vuông nên ME = MF, ME ⊥ MF.

Hình bình hành EMFN có ˆMM^ = 900 nên là hình chữ nhật, lại có ME = MF nên là hình vuông

Bình luận (0)
Hương Yangg
21 tháng 4 2017 lúc 17:06

Tứ giác nhận được theo nhát cắt AB là hình thoi vì có hai đường chéo cắt nhau tại trung điểm của mỗi đường và vuông góc với nhau. Nếu có thêm OA = OB thì hình thoi nhận được có hai đường chéo bằng nhau nên là hình vuông.

Bình luận (0)
Nguyen Thuy Hoa
1 tháng 7 2017 lúc 9:46

Hình vuông

Bình luận (0)
Thanh Ao Tuong
5 tháng 11 2017 lúc 13:34

AB = BC = CD = DA (gt)

AE = BK = CP = DQ (gt)

Suy ra: EB = KC = PD = QA

- Xét ∆ AEQ và ∆ BKE :

AE = BK (gt)

ˆ
A
=
ˆ
B
=
90
0
A^=B^=900

QA = EB (chứng minh trên)

Do đó: ∆ AEQ = ∆ BKE (c.g.c) ⇒ EK = EQ (1)

- Xét ∆ BKE và ∆ CPK :

BK = CP (gt)

ˆ
B
=
ˆ
C
=
90
0
B^=C^=900

EB = KC (chứng minh trên)

Do đó: ∆ BKE = ∆ CPK (c.g.c) ⇒ EK = KP (2)

Xét ∆ CPK và ∆ DQP :

CP = DQ (gt)

ˆ
C
=
ˆ
D
=
90
0
C^=D^=900

DP = CK (chứng minh trên)

Do đó: ∆ CPK = ∆ DQP (c.g.c) ⇒ KP = PQ (3)

Từ (1), (2) và (3) suy ra: EK = KP = PQ = EQ

Tứ giác EKPQ là hình thoi.

Bình luận (0)

Khoá học trên Online Math (olm.vn)

Loading...

Khoá học trên Online Math (olm.vn)