Chuyển động thẳng biến đổi đều

I.Vận tốc tức thời. Chuyển động thẳng biến đổi đều

1. Vận tốc thức thời

Khái niệm: Là vận tốc của vật tại một thời điểm mà ta xét, vận tốc tức thời là đại lượng véc tơ.

Độ lớn của vận tốc tức thời:

  - Trong khoảng thời gian rất ngắn \(\Delta t\), kể từ lúc ở M vật dời được một đoạn đường \(\Delta S\) rất ngắn thì đại lượng : \(v =\dfrac{\Delta S}{\Delta t}\) là độ lớn vận tốc tức thời của vật tại M.

  - Đơn vị: m/s

Véc tơ vận tốc tức thời: Véc tơ vận tốc tức thời \(\vec{v}\) của một vật tại một điểm là một véc tơ có gốc đặt tại vật chuyển động, có hướng của chuyển động và có độ dài tỉ lệ với độ lớn của vận tốc tức thời theo một tỉ xích nào đó.

2. Chuyển động thẳng biến đổi đều

 - Chuyển động thẳng biến đổi đều là chuyển động thẳng, trong đó vận tốc tức thời hoặc tăng dần đều hoặc giảm dần đều theo thời gian.

 - Vận tốc tức thời tăng dần đều theo thời gian gọi là chuyển động nhanh dần đều.

 - Vận tốc tức thời giảm dần đều theo thời gian gọi là chuyển động chậm dần đều.

II. Các đặc trưng trong chuyển động thẳng biến đổi đều

1. Gia tốc

 a) Khái niệm gia tốc

  \(a =\dfrac{\Delta v}{\Delta t}\)

  \(\Delta v = v -v_0\): độ biến thiên vận tốc

  \(\Delta t = t - t_0\): độ biến thiên thời gian (thời gian chuyển động)

-  Gia tốc đặc trưng cho sự biến thiên nhanh chậm của vận tốc.

-  Đơn vị gia tốc: m/s2

b) Véc tơ gia tốc

  - Vì vận tốc là đại lượng véc tơ nên gia tốc cũng là đại lượng véc tơ : \(\vec a = \dfrac{\Delta \vec v}{\Delta t}\)

  - Chú ý :

     + Chuyển động nhanh dần đều \(\vec a\) cùng dấu với \(\vec{v_0}\)

     + Chuyển động chậm dần đều \(\vec a\) ngược dấu với \(\vec{v_0}\)

2. Vận tốc của chuyển động thẳng biến đổi đều

  a) Công thức tính vận tốc

  \(v = v_o + at\) (*)

  \(v\) : vận tốc tại thời điểm t.

  \(v_0\) : vận tốc tại thời điểm ban đầu.

  b) Đồ thị vận tốc – thời gian.

 Từ (*) ta thấy vận tốc là hàm bậc nhất của thời gian nên đồ thị vận tốc - thời gian là một đường thẳng.

3. Quãng đường trong chuyển động thẳng biến đổi đều

    \(S = v_0.t + \dfrac{1}{2}a.t^2\)

4. Phương trình chuyển động của chuyển động thẳng biến đổi đều

    \(x = x_o + v_0.t + \dfrac{1}{2}.at^2\)

5. Công thức liên hệ giữa \(a\), \(v\)\(S\) của chuyển động thẳng biến đổi đều (công thức độc lập thời gian)

    \(v^2- v_0^2=2aS\)

 

Hỏi đáp

Hỏi đáp, trao đổi bài Gửi câu hỏi cho chủ đề này
Luyện trắc nghiệm Trao đổi bài

Tài trợ


Tính năng này đang được xây dựng...