Bài 3: Khái niệm về thể tích của khối đa diện

Khánh Ngọc An
Xem chi tiết
Châu Huỳnh
Xem chi tiết
Tam Cao Duc
Xem chi tiết
Phúc Trần
Xem chi tiết
nguyen thi be
Xem chi tiết
Akai Haruma
25 tháng 7 2021 lúc 9:48

1.

Gọi $I$ là trung điểm $AB$ thì do tam giác $DAB$ và $CAB$ cân tại $D$ và $C$ nên:

$DI\perp AB; CI\perp AB$

$\Rightarrow (DCI)\perp AB$

$\Rightarrow (DCI)\perp AI$ và $(DCI)\perp BI$

Do đó:

\(V_{ABCD}=V_{DAIC}+V_{DIBC}=\frac{1}{3}AI.S_{DIC}+\frac{1}{3}BI.S_{DIC}\)

\(=\frac{1}{3}S_{DIC}(AI+BI)=\frac{1}{3}S_{DIC}.AB=\frac{x}{3}S_{DIC}\)

\(DI=\sqrt{DA^2-AI^2}=\sqrt{DA^2-(\frac{AB}{2})^2}=\sqrt{12-\frac{x^2}{4}}\)

\(CI=\sqrt{AC^2-AI^2}=\sqrt{AC^2-(\frac{AB}{2})^2}=\sqrt{12-\frac{x^2}{4}}\)

$\Rightarrow DCI$ là tam giác cân tại $I$

Kẻ $IM\perp DC$ thì $M$ là trung điểm $DC$

$IM=\sqrt{DI^2-DM^2}=\sqrt{12-\frac{x^2}{4}-(\sqrt{3})^2}$

$=\sqrt{9-\frac{x^2}{4}}$

\(S_{DIC}=\frac{IM.DC}{2}=\sqrt{9-\frac{x^2}{4}}.2\sqrt{3}:2=\frac{\sqrt{3}.\sqrt{36-x^2}}{2}\)

Vậy: \(V_{ABCD}=\frac{\sqrt{3}}{6}x\sqrt{36-x^2}=\frac{\sqrt{3}}{6}\sqrt{x^2(36-x^2)}\)

\(\leq \frac{\sqrt{3}}{6}.\frac{x^2+36-x^2}{2}=3\sqrt{3}\) theo BĐT Cô-si

Vậy $V_{ABCD}$ max bằng $3\sqrt{3}$ khi $x^2=36-x^2$
$\Leftrightarrow x=3\sqrt{2}$

Bình luận (0)
Akai Haruma
25 tháng 7 2021 lúc 9:51

Hình bài 1

Bình luận (0)
Akai Haruma
25 tháng 7 2021 lúc 9:56

Bài 2:
Kẻ $AT\perp $SB$

Ta có:

$SA\perp (ABCD)\Rightarrow SA\perp BC$

$AB\perp BC$ (do $ABCD$ là hình vuông)

$\Rightarrow (SAB)\perp BC$

$\Rightarrow AT\perp BC$ (vì \(AT\subset (SAB)\) )

Mà: $AT\perp SB$

$\Rightarrow AT\perp (SBC)$

$\Rightarrow AT=d(A, (SBC))=\frac{a\sqrt{2}}{2}$

$\frac{1}{SA^2}+\frac{1}{AB^2}=\frac{1}{AT^2}$ theo hệ thức lượng 

$\Leftrightarrow \frac{1}{SA^2}=\frac{1}{AT^2}-\frac{1}{AB^2}=\frac{2}{a^2}+\frac{1}{a^2}$

$\Rightarrow SA=\frac{\sqrt{3}a}{3}$

$V_{S.ABCD}=\frac{1}{3}.SA.S_{ABCD}=\frac{1}{3}.\frac{a\sqrt{3}}{3}.a^2=\frac{\sqrt{3}}{9}a^3$
 

Bình luận (0)
nguyen thi be
Xem chi tiết
nguyen thi be
Xem chi tiết
Nguyễn Việt Lâm
23 tháng 7 2021 lúc 14:41

Kẻ \(MH\perp CD\Rightarrow AMHD\) là hcn

\(\Rightarrow MH=AD=a\)

\(V_{SDCM}=\dfrac{1}{3}SA.S_{MCD}=\dfrac{1}{3}SA.\dfrac{1}{2}MH.CD=\dfrac{1}{6}.a.a.2a=\dfrac{a^3}{3}\)

b.

Trong tam giác vuông DAM, kẻ \(AE\perp DM\Rightarrow DM\perp\left(SAE\right)\)

\(\Rightarrow\widehat{SEA}\) là góc giữa (SDM) và đáy hay \(\widehat{SEA}=60^0\)

\(\Rightarrow AE=\dfrac{SA}{tan60^0}=\dfrac{a\sqrt{3}}{3}\)

Áp dụng hệ thức lượng:

\(\dfrac{1}{AE^2}=\dfrac{1}{AM^2}+\dfrac{1}{AD^2}\Rightarrow AM=\dfrac{a\sqrt{2}}{2}\)

\(\Rightarrow V_{SADM}=\dfrac{1}{3}AM.\dfrac{1}{2}SA.AD=\dfrac{a^3\sqrt{2}}{12}\)

Kẻ \(AF\perp SE\Rightarrow AF\perp\left(SDM\right)\Rightarrow AF=d\left(A;\left(SDM\right)\right)\)

\(\dfrac{1}{AF^2}=\dfrac{1}{SA^2}+\dfrac{1}{AE^2}\Rightarrow AF=\dfrac{a}{2}\)

Bình luận (0)
nguyen thi be
Xem chi tiết
Nguyễn Ngân Hòa
20 tháng 7 2021 lúc 15:46

Bình luận (0)
Nguyễn Ngân Hòa
20 tháng 7 2021 lúc 15:52

Bình luận (0)
nguyen thi be
Xem chi tiết
Nguyễn Việt Lâm
19 tháng 7 2021 lúc 10:50

\(V_{SABC}=\dfrac{1}{3}SA.\dfrac{1}{2}AB.AC=\dfrac{a^3\sqrt{3}}{6}\)

\(S_{SAM}=\dfrac{1}{2}S_{SAB}\Rightarrow V_{SAMC}=\dfrac{1}{2}V_{SABC}=\dfrac{a^3\sqrt{3}}{12}\)

Tam giác SAB vuông tại A nên AM là trung tuyến ứng với cạnh huyền

\(\Rightarrow AM=\dfrac{1}{2}SB=\dfrac{1}{2}\sqrt{SA^2+AB^2}=a\)

\(\left\{{}\begin{matrix}SA\perp\left(ABC\right)\Rightarrow SA\perp AC\\AC\perp AB\end{matrix}\right.\) \(\Rightarrow AC\perp\left(SAB\right)\Rightarrow AC\perp AM\) 

Hay tam giác ACM vuông tại M

\(\Rightarrow S_{AMC}=\dfrac{1}{2}AM.AC=\dfrac{a^2}{2}\)

\(\Rightarrow d\left(S;\left(AMC\right)\right)=\dfrac{3V_{SAMC}}{S_{AMC}}=\dfrac{a\sqrt{3}}{2}\)

Bình luận (0)