Chương 2: ĐƯỜNG THẲNG VÀ MẶT PHẲNG TRONG KHÔNG GIAN. QUAN HỆ SONG SONG

camcon
Xem chi tiết
Nguyễn Việt Lâm
7 tháng 1 lúc 7:34

a.

O là trung điểm BD, N là trung điểm CD

\(\Rightarrow\) ON là đường trung bình tam giác BCD

\(\Rightarrow ON||BC\Rightarrow ON||\left(SBC\right)\)

Tương tự ta có OM là đtb tam giác SAC \(\Rightarrow OM||SC\Rightarrow OM||\left(SBC\right)\)

\(\Rightarrow\left(OMN\right)||\left(SBC\right)\)

b.

Trong mp (SCD), qua E kẻ đường thẳng song song SD cắt SC tại G

\(\Rightarrow EG||SD\Rightarrow EG||\left(SAD\right)\) (1)

Theo định lý Talet: \(\dfrac{EC}{ED}=\dfrac{GC}{GS}\)

Mặt khác AE là phân giác của ACD nên theo định lý phân giác: \(\dfrac{EC}{ED}=\dfrac{AC}{AD}\)

Mà ABC cân tại A \(\Rightarrow AB=AC\); SAD cân tại A \(\Rightarrow AD=SA\)

\(\Rightarrow\dfrac{GC}{GS}=\dfrac{EC}{ED}=\dfrac{AC}{AD}=\dfrac{AB}{SA}\)

AF là phân giác nên áp dụng định lý phân giác:

\(\dfrac{FB}{FS}=\dfrac{AB}{SA}\) \(\Rightarrow\dfrac{FB}{FS}=\dfrac{GC}{GS}\Rightarrow FG||BC\) (Talet đảo) 

\(\Rightarrow FG||AD\Rightarrow FG||\left(SAD\right)\) (2)

(1);(2)  \(\Rightarrow\left(EFG\right)||\left(SAD\right)\Rightarrow EF||\left(SAD\right)\)

Bình luận (0)
Nguyễn Việt Lâm
7 tháng 1 lúc 7:36

loading...

Bình luận (0)
camcon
Xem chi tiết
Nguyễn Việt Lâm
7 tháng 1 lúc 6:38

Gọi O là giao điểm AC và BD, theo t/c hình bình hành \(\Rightarrow O\) là trung điểm AC và BD

\(\Rightarrow\left\{{}\begin{matrix}\overrightarrow{OA}+\overrightarrow{OC}=\overrightarrow{0}\\\overrightarrow{OB}+\overrightarrow{OD}=\overrightarrow{0}\end{matrix}\right.\)

Từ giả thiết:

\(\overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MC}+\overrightarrow{MD}+\overrightarrow{MS}=\overrightarrow{0}\)

\(\Leftrightarrow\overrightarrow{MO}+\overrightarrow{OA}+\overrightarrow{MO}+\overrightarrow{OB}+\overrightarrow{MO}+\overrightarrow{OC}+\overrightarrow{MO}+\overrightarrow{OD}+\overrightarrow{MO}+\overrightarrow{OS}=\overrightarrow{0}\)

\(\Leftrightarrow5.\overrightarrow{MO}+\overrightarrow{OS}=0\)

\(\Leftrightarrow\overrightarrow{OM}=\dfrac{1}{5}\overrightarrow{OS}\)

Hay M là điểm thuộc đoạn thẳng OS sao cho \(OM=\dfrac{1}{5}OS\) \(\Rightarrow SM=4MO\)

Do M thuộc OS \(\Rightarrow M\in\left(SAC\right)\), kéo dài AM cắt SC tại \(C'\) \(\Rightarrow C'\) là điểm cố định (bất chấp vị trí mặt phẳng (P))

Áp dụng định lý Menelaus trong tam giác SOC với 3 điểm A, M, C' thẳng hàng:

\(\dfrac{MS}{MO}.\dfrac{OA}{AC}.\dfrac{CC'}{C'S}=1\Rightarrow4.\dfrac{1}{2}.\dfrac{CC'}{C'S}=1\Rightarrow\dfrac{CC'}{SC'}=\dfrac{1}{2}\)

Bây giờ tới B' và D'.

Cách đơn giản nhất là đề ko cho biết rõ về mp (P), nó chỉ cần chứa AM là đủ, do đó ta chọn vị trí đơn giản nhất của (P) để tính, đó là (P) song song BD. Khi đó, qua M kẻ đường thẳng song song BD lần lượt cắt SB, SD tại B' và D'

Theo định lý Talet:

\(\dfrac{BB'}{SB'}=\dfrac{DD'}{SD'}=\dfrac{MO}{SM}=\dfrac{1}{4}\)

\(\Rightarrow\dfrac{BB'}{SB'}+\dfrac{CC'}{SC'}+\dfrac{DD'}{SD'}=\dfrac{1}{4}+\dfrac{1}{2}+\dfrac{1}{4}=1\)

Trong trường hợp ko muốn làm kiểu chọn mp đặc biệt này thì ta có thể chọn vị trí bất kì cho B', nhưng sẽ tốn thời gian hơn nhiều. Nếu em cần thì cũng có thể giải quyết theo cách ấy.

Bình luận (1)
Nguyễn Việt Lâm
7 tháng 1 lúc 6:43

loading...

Bình luận (2)
Nguyễn Việt Lâm
7 tháng 1 lúc 8:36

Tổng quát:

Trước hết ta nhắc lại định lý đồng phẳng: cho 3 vecto \(\overrightarrow{a};\overrightarrow{b};\overrightarrow{c}\), chúng đồng phẳng khi và chỉ khi tồn tại các số thực m; n sao cho \(\overrightarrow{a}=m.\overrightarrow{b}+n.\overrightarrow{c}\) (1)

Bây giờ ta dựa vào đó chứng minh định lý khác về đồng phẳng trong không gian:

4 điểm A;B;C;D đồng phẳng khi \(\overrightarrow{SD}=p.\overrightarrow{SA}+m.\overrightarrow{SB}+n.\overrightarrow{SC}\)  với 1 điểm S là 1 điểm bất kì và \(m;n;p\) là các số thực thỏa mãn \(m+n+p=1\)

C/m: do A;B;C;D đồng phẳng \(\Rightarrow\overrightarrow{AB};\overrightarrow{AC};\overrightarrow{AD}\) đồng phẳng

Theo (1), tồn tại các số thực m và n sao cho:

\(\overrightarrow{AD}=m.\overrightarrow{AB}+n.\overrightarrow{AC}\Leftrightarrow\overrightarrow{AS}+\overrightarrow{SD}=m\left(\overrightarrow{AS}+\overrightarrow{SB}\right)+n\left(\overrightarrow{AS}+\overrightarrow{SC}\right)\)

\(\Leftrightarrow\overrightarrow{SD}=m.\overrightarrow{SB}+n.\overrightarrow{SC}+\left(1-m-n\right).\overrightarrow{SA}\)

Đặt \(1-m-n=p\Rightarrow\left\{{}\begin{matrix}m+n+p=1\\\overrightarrow{SD}=m.\overrightarrow{SB}+n.\overrightarrow{SC}+p.\overrightarrow{SA}\end{matrix}\right.\) (đpcm)

Quay lại bài toán, ta tính toán cho trường hợp các điểm B' D' lần lượt nằm trên đoạn thẳng SB và SD (trường hợp có 1 điểm nằm ngoài tính y hệt).

 Đặt \(\dfrac{SB}{SB'}=x;\dfrac{SC}{SC'}=y;\dfrac{SD}{SD'}=z\)

Do O là trung điểm AC và BD nên: \(\left\{{}\begin{matrix}\overrightarrow{SA}+\overrightarrow{SC}=2\overrightarrow{SO}\\\overrightarrow{SB}+\overrightarrow{SD}=2\overrightarrow{SO}\end{matrix}\right.\)

\(\Rightarrow\overrightarrow{SA}+\overrightarrow{SB}+\overrightarrow{SC}+\overrightarrow{SD}=4\overrightarrow{SO}\)

\(\Rightarrow\overrightarrow{SA}+x.\overrightarrow{SB'}+y.\overrightarrow{SC'}+z.\overrightarrow{SD'}=5\overrightarrow{SM}\) (do \(\overrightarrow{SO}=\dfrac{5}{4}\overrightarrow{SM}\))

Do A;B'C'D' đồng phẳng nên tồn tại \(m+n+p=1\) sao cho \(\overrightarrow{SA}=m.\overrightarrow{SB'}+n.\overrightarrow{SC'}+p.\overrightarrow{SD'}\)

\(\Rightarrow\left(m+x\right)\overrightarrow{SB'}+\left(n+y\right)\overrightarrow{SC'}+\left(p+z\right)\overrightarrow{SD'}=5\overrightarrow{SM}\)

\(\Leftrightarrow\overrightarrow{SM}=\dfrac{1}{5}\left(m+x\right)\overrightarrow{SB'}+\dfrac{1}{5}\left(n+y\right)\overrightarrow{SC'}+\dfrac{1}{5}\left(p+z\right)\overrightarrow{SD'}\)

Do M;B'C'D' đồng phẳng nên:

\(\dfrac{1}{5}\left(m+x\right)+\dfrac{1}{5}\left(n+y\right)+\dfrac{1}{5}\left(p+z\right)=1\)

\(\Leftrightarrow m+n+p+x+y+z=5\)

\(\Leftrightarrow1+x+y+z=5\)

\(\Leftrightarrow x+y+z=4\)

\(\Leftrightarrow\dfrac{SB}{SB'}+\dfrac{SC}{SC'}+\dfrac{SD}{SD'}=4\)

\(\Leftrightarrow\dfrac{SB'+BB'}{SB'}+\dfrac{SC'+CC'}{SC'}+\dfrac{SD'+DD'}{SD'}=4\)

\(\Leftrightarrow\dfrac{BB'}{SB'}+\dfrac{CC'}{SC'}+\dfrac{DD'}{SD'}=1\)

Bình luận (0)
Almoez Ali
Xem chi tiết
Almoez Ali
26 tháng 12 2023 lúc 18:36

loading...  

Bình luận (0)
nguyen ngoc son
Xem chi tiết
nguyen ngoc son
Xem chi tiết
nguyen ngoc son
Xem chi tiết
Trên con đường thành côn...
22 tháng 12 2023 lúc 19:27

Dễ thấy hàm \(f\left(x\right)=\left(1-m\right)x^5+9mx^2-16x-m\) liên tục trên R với mọi giá trị của m

Ta có:

\(f\left(-2\right)=\left(1-m\right).\left(-2\right)^5+9m.\left(-2\right)^2-16.\left(-2\right)-m\)

           \(=-32\left(1-m\right)+4.9m+32-m=67m\)

\(f\left(0\right)=-m\)

\(f\left(2\right)=\left(1-m\right).2^5+9m.2^2-16.2-m\)

        \(=32\left(1-m\right)+4.9m-32-m=3m\)

Nếu \(m=0\) thì ta có đpcm

Nếu \(m\ne0\) thì

    \(\left\{{}\begin{matrix}f\left(-2\right).f\left(0\right)=-67m^2< 0\\f\left(0\right).f\left(2\right)=-3m^2< 0\end{matrix}\right.\)

Do đó pt đã cho có ít nhất một nghiệm trên mỗi khoảng \(\left(-2;0\right)\) và \(\left(0;2\right)\)

\(\Rightarrowđpcm\)

Vậy ta có điều phải chứng minh

Bình luận (2)
Trên con đường thành côn...
23 tháng 12 2023 lúc 19:30

Ở đây cần chọn \(x\) sao cho \(x^5-16x=0\) để khi thay vào \(f\left(x\right)\) sẽ không còn hệ số tự do mà chỉ có \(m\) để dễ đánh giá

Vì lí do đó nên ta chọn được \(x=0;x=-2;x=2\)

Bình luận (0)
nguyen ngoc son
Xem chi tiết
Kaarthik001
22 tháng 12 2023 lúc 18:48

Bình luận (0)
Bé Đầu Đất
Xem chi tiết
Nguyễn Lê Phước Thịnh
14 tháng 12 2023 lúc 5:02

Câu 1: B

Câu 2: B

Bình luận (0)
Scarlett
Xem chi tiết
I
11 tháng 12 2023 lúc 21:59

đề có sai k ạ :?
bạn thử vẽ hình xem

Bình luận (0)
FurryJaki 1992
Xem chi tiết
Nguyễn Lê Phước Thịnh
1 tháng 12 2023 lúc 19:32

a: \(N\in SB\subset\left(SBC\right)\)

\(N\in\left(NAD\right)\)

Do đó: \(N\in\left(SBC\right)\cap\left(NAD\right)\)

Xét (SBC) và (NAD) có

\(N\in\left(SBC\right)\cap\left(NAD\right)\)

BC//AD

Do đó: (SBC) giao (NAD)=xy, xy đi qua N và xy//BC//AD

b: Trong mp(ABCD), Gọi O là giao điểm của AC và BD

\(O\in AC\subset\left(SAC\right)\)

\(O\in BD\subset\left(SBD\right)\)

Do đó: \(O\in\left(SAC\right)\cap\left(SBD\right)\left(1\right)\)

\(S\in SA\subset\left(SAC\right)\)

\(S\in SB\subset\left(SBD\right)\)

Do đó: \(S\in\left(SAC\right)\cap\left(SBD\right)\left(2\right)\)

Từ (1) và (2) suy ra (SAC) giao (SBD)=SO

c: Chọn mp(SBC) có chứa NK

\(SC\subset\left(SBC\right)\)

\(SC\subset\left(SCA\right)\)

Do đó: \(\left(SBC\right)\cap\left(SCA\right)=SC\)

Gọi E là giao điểm của NK với SC

=>E là giao điểm của NK với mp(SAC)

d: Chọn mp(SBD) có chứa DN

Ta có: (SBD) giao (SAC)=SO(cmt)

nên ta sẽ gọi F là giao điểm của SO với DN

=>F là giao điểm của ND với mp(SAC)

e: Xét ΔSAB có

M,N lần lượt là trung điểm của SA,SB

=>MN là đường trung bình của ΔSAB

=>MN//AB và \(MN=\dfrac{AB}{2}\)

MN//AB

AB//CD

Do đó: MN//CD

Xét tứ giác MNCD có MN//CD

nên MNCD là hình thang

 

Bình luận (0)